This site is for health professionals and their patients. Customers will require a fulfillment code to access our virtual dispensary.
熟悉的公共衛生信息經常提到要我們專注於強健骨骼的鈣。 雖然這是的確是真的,但只不過這是一種對骨骼健康過於簡單化的看法。
實際上,許多其他營養素也同樣重要。 這些支持骨骼的維他命和礦物質與鈣作為一個團隊來工作,讓你的骨骼從童年到老年保持強壯和健康。
要了解其他營養素如何促進骨骼健康,從鈣開始是有幫助的。鈣是你體內含量最豐富的礦物質。它受到如此嚴格的監管,如果通過飲食或補充劑的攝入不足,身體就會分解骨骼。
除了作為骨骼的主要組成部分外,鈣還在細胞信號傳導中發揮作用。[1]你可以在你的血液和細胞中找到少量的鈣,但接近 99% 的鈣存在於你的骨骼和牙齒中。[2]
隨著年齡的增長,骨骼分解會增加,而骨骼形成會減慢,尤其是絕經後女性。這些變化會導致骨質流失和完整性問題。在幾個研究中發現在飲食中鈣的攝入量和骨骼的健康產生正面的關係後,鈣與骨骼之間的關係成為一個公眾的健康信息 。但是他們吃的其他營養素呢?
實際上,這種關係並不是非黑即白。一項廣泛審查了許多不同的研究指出,重點關注老年人鈣攝入量與骨骼健康之間的關係,發現鈣攝入量與骨折風險之間的結果不一。作者發現鈣似乎與降低骨折風險無關。因此,他們得出結論,支持鈣的補充劑對能維持骨骼健康的證據充其量是薄弱的。 [3]
答案是不。 鈣確實對你的骨骼很重要,但它本身並不起作用。
當鈣與其他營養素結合時,會有明顯的好處。 例如,對使用鈣和維他命 D 的研究進行的薈萃分析表明,補充這兩種營養素對降低骨折風險,尤其是對髖部骨折的風險產生好處。[4]
這些結果表明,雖然鈣是必不可少的,但一種營養素是不足夠的。 這個結論是有道理的,因為在現實世界中,營養素並不存在於真空中。 當你進餐時,你會攝入能產生協同作用的維他命和礦物質。 因此從理論上講,你的補充劑的作用應該類似,因為我們的身體使用所有這些營養素的組合來支持我們的骨骼健康。 [5]
如上所述,維他命 D 因其對骨骼健康的正面影響而得到充分研究,與鈣一起服用可增強力量和降低骨折風險。 [6] 一種必需的脂溶性維他命,維他命D 的主要來源是通過陽光照射,因為通過飲食獲得足夠的維他命具有挑戰性。 然而,由於皮膚色素沉著、防曬和氣候差異,許多人的水平不理想。
成骨細胞,即形成骨骼的細胞,其表面有維他命D 受體。 [7] 因此,維他命 D 可能有助於支持新骨細胞和骨組織的形成。 [8] 維他命 D 也可能影響骨蛋白和生長因子的基因表達。 [9] 懷孕期間補充更高劑量的維他命 D 甚至可能導致兒童在成長過程中的骨骼更強壯。 [10]
另一個鮮為人知的用於支持骨骼的礦物質是鎂。 鎂與體內的其他形成骨骼的營養素產生協同作用。 它特別有利於支持骨骼的礦物質密度,這是衡量骨骼健康的重要指標。 鎂可能有助於骨骼健康,因為它會影響維他命 D 的活性,並與鈣一起支持健康的維他命 D 狀況。[11]
研究表明,較低水平的鎂與骨骼健康問題有關。 [12] 此外,飲食中鎂攝入量較低的人似乎骨折的風險增加,骨骼礦物質密度降低。 同時,補充劑支持骨骼的礦物質密度和減少骨骼分解。[13] [14]
鋅是另一種有助於骨骼健康的微量礦物質。 [15] 人體中大約 30% 的鋅存在於骨骼中。 [16] 鋅主要存在於高蛋白食物中,尤其是貝類。
結合鈣、維他命 D 和鎂,鋅有助於骨骼礦化。 [17] 鋅通過刺激成骨細胞來支持新骨的形成和再生。 它還有助於抑制骨骼分解,是最佳鈣的吸收所必需的。 [18] 相反,次優的鋅水平與骨骼生長、骨質密度和膠原合成水平降低有關。[19]
銅與鋅產生協同作用——兩者的比例對骨骼健康及其他方面至關重要。 再說一次,你可能不會立即將銅視為骨骼構建營養素,但它在構建膠原蛋白所需的酶以支持骨骼結構方面發揮著作用。
與鋅類似,銅也會通過限制骨骼分解而起作用。 [20] 沒有足夠的銅,骨骼健康狀況的風險就會增加,並且由於上述酶的產生減少,骨骼會異常生長。[21]
雖然你可能認為維他命 C 主要具有免疫益處,但它也在你的骨骼形成中發揮作用。 通過飲食和補充劑攝入維他命 C(或抗壞血酸)與支持骨骼的礦物質密度有關,尤其是在更年期婦女中。 其正面作用可能與維他命 C 影響成骨細胞中骨基質的基因表達能力有關。[22]
錳是一種微量金屬,再次與其他支持骨骼的營養素產生協同作用,以支持改善骨質密度。 與許多其他營養素相比,關於錳對骨骼健康的研究並不那麼有力。 儘管如此,他們確實指出了它的協作作用。 錳是建構骨骼軟骨、膠原蛋白和骨骼礦化的輔助因子。 [23]
較低水平的錳攝入與骨骼密度降低有關。 與安慰劑組相比,使用補充錳與鈣、銅和鋅合併補充劑的研究發現,更年期後骨骼維護得到改善。[24]
如你所見,許多不同的營養素會影響骨骼健康。 支撐骨骼需要平衡所有這些營養素。 富含新鮮農產品、全穀物和健康蛋白質的飲食將有助於為你的日常攝入提供這些維他命和礦物質的來源。 然而,補充劑對於確保你滿足所有骨骼營養需求特別有利。
免責聲明:該信息僅用於一般教育目的。 這些療法不是標準醫療保健的替代品,也不能由患者單獨使用。 公司對作者的信息不承擔任何責任,無論是口頭傳達還是在這些材料中。 所有陳述均代表作者的意見,不代表本公司的立場或意見。 作者通過商品名稱、商標或製造商對任何特定產品、流程或服務的引用不構成或暗示本公司的認可或推薦。
參考資料
[1] Jacobson, Jake, and Michael R. Duchen. “Interplay between Mitochondria and Cellular Calcium Signalling.” Molecular and Cellular Biochemistry 256–257, no. 1–2 (February 2004): 209–18. https://doi.org/10.1023/b:mcbi.0000009869.29827.df.
[2] Intakes, Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference. Calcium. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. National Academies Press (US), 1997. https://www.ncbi.nlm.nih.gov/books/NBK109827/.
[3] Bolland, Mark J., William Leung, Vicky Tai, Sonja Bastin, Greg D. Gamble, Andrew Grey, and Ian R. Reid. “Calcium Intake and Risk of Fracture: Systematic Review.” BMJ (Clinical Research Ed.) 351 (September 29, 2015): h4580. https://doi.org/10.1136/bmj.h4580.
[4] Weaver, C. M., D. D. Alexander, C. J. Boushey, B. Dawson-Hughes, J. M. Lappe, M. S. LeBoff, S. Liu, A. C. Looker, T. C. Wallace, and D. D. Wang. Osteoporosis International: A Journal Established as Result of Cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 27, no. 1 (January 2016): 367–76. https://doi.org/10.1007/s00198-015-3386-5.
[5] Muñoz-Garach, Araceli, Beatriz García-Fontana, and Manuel Muñoz-Torres. Nutrients 12, no. 7 (July 3, 2020). https://doi.org/10.3390/nu12071986.
[6] Islam, Md Zahirul, Abu Ahmed Shamim, Heli T. Viljakainen, Mohammad Akhtaruzzaman, Atia H. Jehan, Habib Ullah Khan, Ferdaus Ahmad Al-Arif, and Christel Lamberg-Allardt. “Effect of Vitamin D, Calcium and Multiple Micronutrient Supplementation on Vitamin D and Bone Status in Bangladeshi Premenopausal Garment Factory Workers with Hypovitaminosis D: A Double-Blinded, Randomised, Placebo-Controlled 1-Year Intervention.” The British Journal of Nutrition 104, no. 2 (July 2010): 241–47. https://doi.org/10.1017/S0007114510000437.
[7] Lam, Nga N., Rahma Triliana, Rebecca K. Sawyer, Gerald J. Atkins, Howard A. Morris, Peter D. O’Loughlin, and Paul H. Anderson. “Vitamin D Receptor Overexpression in Osteoblasts and Osteocytes Prevents Bone Loss during Vitamin D-Deficiency.” The Journal of Steroid Biochemistry and Molecular Biology 144 Pt A (October 2014): 128–31. https://doi.org/10.1016/j.jsbmb.2014.01.002.
[8] Leeuwen, J. P. van, M. van Driel, G. J. van den Bemd, and H. A. Pols. “Vitamin D Control of Osteoblast Function and Bone Extracellular Matrix Mineralization.” Critical Reviews in Eukaryotic Gene Expression 11, no. 1–3 (2001): 199–226.
[9] M., Driel van, A. P. Pols H., and T. M. van Leeuwen J. P. “Osteoblast Differentiation and Control by Vitamin D and Vitamin D Metabolites.” Current Pharmaceutical Design 10, no. 21 (July 31, 2004): 2535–55.
[10] Brustad, Nicklas, Juri Garland, Jonathan Thorsen, Astrid Sevelsted, Martin Krakauer, Rebecca K. Vinding, Jakob Stokholm, Klaus Bønnelykke, Hans Bisgaard, and Bo L. Chawes. “Effect of High-Dose vs Standard-Dose Vitamin D Supplementation in Pregnancy on Bone Mineralization in Offspring Until Age 6 Years: A Prespecified Secondary Analysis of a Double-Blinded, Randomized Clinical Trial.” JAMA Pediatrics 174, no. 5 (May 1, 2020): 419–27. https://doi.org/10.1001/jamapediatrics.2019.6083.
[11] Dai, Qi, Xiangzhu Zhu, JoAnn E. Manson, Yiqing Song, Xingnan Li, Adrian A. Franke, Rebecca B. Costello, et al. “Magnesium Status and Supplementation Influence Vitamin D Status and Metabolism: Results from a Randomized Trial.” The American Journal of Clinical Nutrition 108, no. 6 (December 1, 2018): 1249–58. https://doi.org/10.1093/ajcn/nqy274.
[12] Rondanelli, Mariangela, Milena Anna Faliva, Alice Tartara, Clara Gasparri, Simone Perna, Vittoria Infantino, Antonella Riva, Giovanna Petrangolini, and Gabriella Peroni. “An Update on Magnesium and Bone Health.” Biometals: An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine, May 6, 2021. https://doi.org/10.1007/s10534-021-00305-0.
[13] Carpenter, Thomas O., Maria C. DeLucia, Jane Hongyuan Zhang, Gina Bejnerowicz, Lisa Tartamella, James Dziura, Kitt Falk Petersen, Douglas Befroy, and Dorothy Cohen. “A Randomized Controlled Study of Effects of Dietary Magnesium Oxide Supplementation on Bone Mineral Content in Healthy Girls.” The Journal of Clinical Endocrinology and Metabolism 91, no. 12 (December 2006): 4866–72. https://doi.org/10.1210/jc.2006-1391.
[14] Aydin, Hasan, Oğuzhan Deyneli, Dilek Yavuz, Hülya Gözü, Nilgün Mutlu, Işik Kaygusuz, and Sema Akalin. Biological Trace Element Research 133, no. 2 (February 2010): 136–43. https://doi.org/10.1007/s12011-009-8416-8.
[15] O’Connor, J. Patrick, Deboleena Kanjilal, Marc Teitelbaum, Sheldon S. Lin, and Jessica A. Cottrell. “Zinc as a Therapeutic Agent in Bone Regeneration.” Materials (Basel, Switzerland) 13, no. 10 (May 12, 2020). https://doi.org/10.3390/ma13102211.
[16] King, J. C., D. M. Shames, and L. R. Woodhouse. “Zinc Homeostasis in Humans.” The Journal of Nutrition 130, no. 5S Suppl (May 2000): 1360S-6S. https://doi.org/10.1093/jn/130.5.1360S.
[17] Nielsen, Forrest H., Henry C. Lukaski, LuAnn K. Johnson, and Z. K. Fariba Roughead. “Reported Zinc, but Not Copper, Intakes Influence Whole-Body Bone Density, Mineral Content and T Score Responses to Zinc and Copper Supplementation in Healthy Postmenopausal Women.” The British Journal of Nutrition 106, no. 12 (December 2011): 1872–79. https://doi.org/10.1017/S0007114511002352.
[18][18] Yamaguchi, Masayoshi. Molecular and Cellular Biochemistry 338, no. 1–2 (May 2010): 241–54. https://doi.org/10.1007/s11010-009-0358-0.
[19] Alghadir, Ahmad H., Sami A. Gabr, Einas S. Al-Eisa, and Muaz H. Alghadir. “Correlation between Bone Mineral Density and Serum Trace Elements in Response to Supervised Aerobic Training in Older Adults.” Clinical Interventions in Aging 11 (2016): 265–73. https://doi.org/10.2147/CIA.S100566.
[20] Rył, Aleksandra, Tomasz Miazgowski, Aleksandra Szylińska, Agnieszka Turoń-Skrzypińska, Alina Jurewicz, Andrzej Bohatyrewicz, and Iwona Rotter. “Bone Health in Aging Men: Does Zinc and Cuprum Level Matter?” Biomolecules 11, no. 2 (February 8, 2021). https://doi.org/10.3390/biom11020237.
[21] Pepa, Giuseppe Della, and Maria Luisa Brandi. “Microelements for Bone Boost: The Last but Not the Least.” Clinical Cases in Mineral and Bone Metabolism 13, no. 3 (2016): 181–85. https://doi.org/10.11138/ccmbm/2016.13.3.181.
[22] Aghajanian, Patrick, Susan Hall, Montri D. Wongworawat, and Subburaman Mohan. “The Roles and Mechanisms of Actions of Vitamin C in Bone: New Developments.” Journal of Bone and Mineral Research : The Official Journal of the American Society for Bone and Mineral Research 30, no. 11 (November 2015): 1945–55. https://doi.org/10.1002/jbmr.2709.
[23] Palacios, Cristina. “The Role of Nutrients in Bone Health, from A to Z.” Critical Reviews in Food Science and Nutrition 46, no. 8 (2006): 621–28. https://doi.org/10.1080/10408390500466174.
[24] Rondanelli, Mariangela, Milena Anna Faliva, Gabriella Peroni, Vittoria Infantino, Clara Gasparri, Giancarlo Iannello, Simone Perna, Antonella Riva, Giovanna Petrangolini, and Alice Tartara. “Essentiality of Manganese for Bone Health: An Overview and Update.” Natural Product Communications 16, no. 5 (May 1, 2021): 1934578X211016649. https://doi.org/10.1177/1934578X211016649.
The familiar public health message tells us to focus on calcium for strong bones. While this is true, it is an oversimplistic view of bone health.
In reality, many other nutrients are just as important. These bone-supporting vitamins and minerals work together as a team — along with calcium — to keep your bones strong and healthy from childhood through the older years.
To understand how other nutrients contribute to the health of your bones, it’s helpful to start at the beginning with calcium. Calcium is the most abundant mineral found in your body. It is so tightly regulated that the body will break down bones if intake through diet or supplements is lacking.
Aside from being a major building block of bone, calcium also plays a role in cellular signaling.[1] You can find a small amount of calcium in your blood and cells, but close to 99 percent is found in your bones and teeth.[2]
As you age, bone breakdown increases while bone formation slows down, especially in postmenopausal women. These changes result in bone mass loss and integrity issues. The association between calcium and bone health became a public health message after several studies found a positive connection between calcium intake in the diet and bone health. But what about the other nutrients they ate?
In reality, the relationship is not so black and white. An extensive review examining many different studies focused on the relationship between calcium intake bone health in the elderly found mixed results between calcium intake and risk of fracture. The authors found that calcium did not appear to be associated with a reduced risk of fracture. Thus, they concluded that the evidence supporting calcium supplements alone for bone health is weak at best.[3]
The answer is no. Calcium does matter for your bones, but it doesn’t work by itself.
There are noticeable benefits when calcium is combined with other nutrients. For example, a meta-analysis of studies that used calcium in combination with vitamin D illustrated the benefit of supplementation with both nutrients for reducing fracture risk, especially hip fractures.[4]
These results suggest that while calcium is essential, one single nutrient isn’t enough. This conclusion makes sense because in the real world nutrients don’t exist in a vacuum. When you eat a meal, you take in vitamins and minerals that work synergistically together. So theoretically, your supplements should work similarly, as our body uses the combination of all of these nutrients to support our bone health.[5]
As mentioned above, vitamin D has been well-studied for its positive impact on bone health, combined with calcium for supporting strength and fracture risk reduction.[6] An essential fat-soluble vitamin, the primary source of vitamin D is through sun exposure since it’s challenging to get enough through the diet. However, because of skin pigmentation, sun protection, and climate differences, many people have suboptimal levels.
Osteoblasts, the cells that form bone, have vitamin D receptors on their surfaces.[7] As a result, vitamin D may help support the formation of new bone cells and bone tissue.[8] Vitamin D may also influence the expression of genes for bone protein and growth factors.[9] Higher doses of vitamin D supplementation during pregnancy could even lead to stronger bones for children as they grow.[10]
Another less talked about mineral for bone support is magnesium. Magnesium works synergistically with other bone-building nutrients in the body. It’s especially beneficial for supporting bone mineral density, an important measurement for bone health. Magnesium may help with bone health because it impacts vitamin D activity and supports a healthy vitamin D status alongside calcium.[11]
Studies show that lower levels of magnesium are associated with bone health concerns.[12] Further, people who take in lower amounts of magnesium in their diet appear to have an increased risk of fracture and reduced bone mineral density. At the same time, supplementation supports bone mineral density and reductions in bone breakdown. [13] [14]
Zinc is another trace mineral that contributes to your bone health.[15] About thirty percent of the zinc in your body is found in bone.[16] Zinc is primarily found in high protein foods, especially shellfish.
In combination with calcium, vitamin D, and magnesium, zinc helps with bone mineralization.[17] Zinc supports the formation and regeneration of new bone by stimulating osteoblasts. It also helps to inhibit bone breakdown and is needed for optimal calcium absorption.[18] Conversely, suboptimal zinc levels are associated with reduced skeletal growth, bone density, and even lower levels of collagen synthesis.[19]
Copper works in tandem with zinc — and the ratio of the two is essential for bone health and beyond. Once again, you may not immediately consider copper a bone-building nutrient, but it plays a role in building the enzymes needed for collagen to support the structure of bone.
Similar to zinc, copper also works by limiting the breakdown of bone.[20] Without enough copper, the risk of bone health conditions is increased, and bones can grow abnormally because of the reduced enzyme production mentioned above.[21]
While you may primarily think of vitamin C for its immune benefits, it also plays a role in your bone formation. Vitamin C (or ascorbic acid) intake through diet and supplementation is associated with supporting bone mineral density, especially in menopausal women. Its positive effects may be related to vitamin C’s ability to impact gene expression for bone matrix in osteoblasts.[22]
Manganese is a trace metal that once again works synergistically with other bone supporting nutrients to support improvements in bone density. The studies on manganese for bone health are not as robust as compared to many other nutrients. Still, they do point towards its collaborative role. Manganese acts as a co-factor for building bone cartilage, collagen, and bone mineralization.[23]
Lower levels of manganese intake are associated with reduced bone density. And studies that used supplemental manganese combined with calcium, copper, and zinc saw improvements in bone maintenance after menopause, compared to a placebo group.[24]
As you can see, many different nutrients impact bone health. Supporting bones requires a balance of all of these nutrients. A diet rich in fresh produce, whole grains, and healthy protein will help to provide sources of these vitamins and minerals into your daily intake. However, supplementation can be especially beneficial to make sure you are meeting all your bone-nutrient needs.
Disclaimer: The information is for general education purposes only. These therapies are not substitutions for standard medical care and are not meant to be used by a patient alone. The Company assumes no liability for the author’s information, whether conveyed verbally or in these materials. All presentations represent the opinions of the author and do not represent the position or the opinion of the Company. Reference by the author to any specific product, process, or service by trade name, trademark, or manufacturer does not constitute or imply endorsement or recommendation by the Company.
Reference
[1] Jacobson, Jake, and Michael R. Duchen. “Interplay between Mitochondria and Cellular Calcium Signalling.” Molecular and Cellular Biochemistry 256–257, no. 1–2 (February 2004): 209–18. https://doi.org/10.1023/b:mcbi.0000009869.29827.df.
[2] Intakes, Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference. Calcium. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. National Academies Press (US), 1997. https://www.ncbi.nlm.nih.gov/books/NBK109827/.
[3] Bolland, Mark J., William Leung, Vicky Tai, Sonja Bastin, Greg D. Gamble, Andrew Grey, and Ian R. Reid. “Calcium Intake and Risk of Fracture: Systematic Review.” BMJ (Clinical Research Ed.) 351 (September 29, 2015): h4580. https://doi.org/10.1136/bmj.h4580.
[4] Weaver, C. M., D. D. Alexander, C. J. Boushey, B. Dawson-Hughes, J. M. Lappe, M. S. LeBoff, S. Liu, A. C. Looker, T. C. Wallace, and D. D. Wang. Osteoporosis International: A Journal Established as Result of Cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 27, no. 1 (January 2016): 367–76. https://doi.org/10.1007/s00198-015-3386-5.
[5] Muñoz-Garach, Araceli, Beatriz García-Fontana, and Manuel Muñoz-Torres. Nutrients 12, no. 7 (July 3, 2020). https://doi.org/10.3390/nu12071986.
[6] Islam, Md Zahirul, Abu Ahmed Shamim, Heli T. Viljakainen, Mohammad Akhtaruzzaman, Atia H. Jehan, Habib Ullah Khan, Ferdaus Ahmad Al-Arif, and Christel Lamberg-Allardt. “Effect of Vitamin D, Calcium and Multiple Micronutrient Supplementation on Vitamin D and Bone Status in Bangladeshi Premenopausal Garment Factory Workers with Hypovitaminosis D: A Double-Blinded, Randomised, Placebo-Controlled 1-Year Intervention.” The British Journal of Nutrition 104, no. 2 (July 2010): 241–47. https://doi.org/10.1017/S0007114510000437.
[7] Lam, Nga N., Rahma Triliana, Rebecca K. Sawyer, Gerald J. Atkins, Howard A. Morris, Peter D. O’Loughlin, and Paul H. Anderson. “Vitamin D Receptor Overexpression in Osteoblasts and Osteocytes Prevents Bone Loss during Vitamin D-Deficiency.” The Journal of Steroid Biochemistry and Molecular Biology 144 Pt A (October 2014): 128–31. https://doi.org/10.1016/j.jsbmb.2014.01.002.
[8] Leeuwen, J. P. van, M. van Driel, G. J. van den Bemd, and H. A. Pols. “Vitamin D Control of Osteoblast Function and Bone Extracellular Matrix Mineralization.” Critical Reviews in Eukaryotic Gene Expression 11, no. 1–3 (2001): 199–226.
[9] M., Driel van, A. P. Pols H., and T. M. van Leeuwen J. P. “Osteoblast Differentiation and Control by Vitamin D and Vitamin D Metabolites.” Current Pharmaceutical Design 10, no. 21 (July 31, 2004): 2535–55.
[10] Brustad, Nicklas, Juri Garland, Jonathan Thorsen, Astrid Sevelsted, Martin Krakauer, Rebecca K. Vinding, Jakob Stokholm, Klaus Bønnelykke, Hans Bisgaard, and Bo L. Chawes. “Effect of High-Dose vs Standard-Dose Vitamin D Supplementation in Pregnancy on Bone Mineralization in Offspring Until Age 6 Years: A Prespecified Secondary Analysis of a Double-Blinded, Randomized Clinical Trial.” JAMA Pediatrics 174, no. 5 (May 1, 2020): 419–27. https://doi.org/10.1001/jamapediatrics.2019.6083.
[11] Dai, Qi, Xiangzhu Zhu, JoAnn E. Manson, Yiqing Song, Xingnan Li, Adrian A. Franke, Rebecca B. Costello, et al. “Magnesium Status and Supplementation Influence Vitamin D Status and Metabolism: Results from a Randomized Trial.” The American Journal of Clinical Nutrition 108, no. 6 (December 1, 2018): 1249–58. https://doi.org/10.1093/ajcn/nqy274.
[12] Rondanelli, Mariangela, Milena Anna Faliva, Alice Tartara, Clara Gasparri, Simone Perna, Vittoria Infantino, Antonella Riva, Giovanna Petrangolini, and Gabriella Peroni. “An Update on Magnesium and Bone Health.” Biometals: An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine, May 6, 2021. https://doi.org/10.1007/s10534-021-00305-0.
[13] Carpenter, Thomas O., Maria C. DeLucia, Jane Hongyuan Zhang, Gina Bejnerowicz, Lisa Tartamella, James Dziura, Kitt Falk Petersen, Douglas Befroy, and Dorothy Cohen. “A Randomized Controlled Study of Effects of Dietary Magnesium Oxide Supplementation on Bone Mineral Content in Healthy Girls.” The Journal of Clinical Endocrinology and Metabolism 91, no. 12 (December 2006): 4866–72. https://doi.org/10.1210/jc.2006-1391.
[14] Aydin, Hasan, Oğuzhan Deyneli, Dilek Yavuz, Hülya Gözü, Nilgün Mutlu, Işik Kaygusuz, and Sema Akalin. Biological Trace Element Research 133, no. 2 (February 2010): 136–43. https://doi.org/10.1007/s12011-009-8416-8.
[15] O’Connor, J. Patrick, Deboleena Kanjilal, Marc Teitelbaum, Sheldon S. Lin, and Jessica A. Cottrell. “Zinc as a Therapeutic Agent in Bone Regeneration.” Materials (Basel, Switzerland) 13, no. 10 (May 12, 2020). https://doi.org/10.3390/ma13102211.
[16] King, J. C., D. M. Shames, and L. R. Woodhouse. “Zinc Homeostasis in Humans.” The Journal of Nutrition 130, no. 5S Suppl (May 2000): 1360S-6S. https://doi.org/10.1093/jn/130.5.1360S.
[17] Nielsen, Forrest H., Henry C. Lukaski, LuAnn K. Johnson, and Z. K. Fariba Roughead. “Reported Zinc, but Not Copper, Intakes Influence Whole-Body Bone Density, Mineral Content and T Score Responses to Zinc and Copper Supplementation in Healthy Postmenopausal Women.” The British Journal of Nutrition 106, no. 12 (December 2011): 1872–79. https://doi.org/10.1017/S0007114511002352.
[18][18] Yamaguchi, Masayoshi. Molecular and Cellular Biochemistry 338, no. 1–2 (May 2010): 241–54. https://doi.org/10.1007/s11010-009-0358-0.
[19] Alghadir, Ahmad H., Sami A. Gabr, Einas S. Al-Eisa, and Muaz H. Alghadir. “Correlation between Bone Mineral Density and Serum Trace Elements in Response to Supervised Aerobic Training in Older Adults.” Clinical Interventions in Aging 11 (2016): 265–73. https://doi.org/10.2147/CIA.S100566.
[20] Rył, Aleksandra, Tomasz Miazgowski, Aleksandra Szylińska, Agnieszka Turoń-Skrzypińska, Alina Jurewicz, Andrzej Bohatyrewicz, and Iwona Rotter. “Bone Health in Aging Men: Does Zinc and Cuprum Level Matter?” Biomolecules 11, no. 2 (February 8, 2021). https://doi.org/10.3390/biom11020237.
[21] Pepa, Giuseppe Della, and Maria Luisa Brandi. “Microelements for Bone Boost: The Last but Not the Least.” Clinical Cases in Mineral and Bone Metabolism 13, no. 3 (2016): 181–85. https://doi.org/10.11138/ccmbm/2016.13.3.181.
[22] Aghajanian, Patrick, Susan Hall, Montri D. Wongworawat, and Subburaman Mohan. “The Roles and Mechanisms of Actions of Vitamin C in Bone: New Developments.” Journal of Bone and Mineral Research : The Official Journal of the American Society for Bone and Mineral Research 30, no. 11 (November 2015): 1945–55. https://doi.org/10.1002/jbmr.2709.
[23] Palacios, Cristina. “The Role of Nutrients in Bone Health, from A to Z.” Critical Reviews in Food Science and Nutrition 46, no. 8 (2006): 621–28. https://doi.org/10.1080/10408390500466174.
[24] Rondanelli, Mariangela, Milena Anna Faliva, Gabriella Peroni, Vittoria Infantino, Clara Gasparri, Giancarlo Iannello, Simone Perna, Antonella Riva, Giovanna Petrangolini, and Alice Tartara. “Essentiality of Manganese for Bone Health: An Overview and Update.” Natural Product Communications 16, no. 5 (May 1, 2021): 1934578X211016649. https://doi.org/10.1177/1934578X211016649.