This site is for health professionals and their patients. Customers will require a fulfillment code to access our virtual dispensary.
對於許多人來說,排毒這個詞帶來了限制性飲食的形象,在這種情況下,一周只喝檸檬汁就可以以某種方式轉化為增強的健康。
實際上,排毒並不是一種健康趨勢。 這是一個生理過程,每天都在你的身體內運行。 當它運作順利時,你會感覺良好,但有時由於生活方式或疾病,這個過程可能會失去平衡。
支持排毒需要一種整全的方法,包括多種飲食和生活方式因素。 儘管如此,某些食物和補充劑,尤其是在西蘭花等十字花科蔬菜中發現的食物和補品,可以幫助身體恢復平衡。 蘿蔔硫素和二吲哚甲烷 (DIM) 是在十字花科蔬菜中發現的兩種植物化學物質,它們可以
作為一個有力的工具來優化身體已經優秀的排毒系統。
你每天都會通過皮膚、肺和胃腸道接觸來自外界的潛在的有害化合物。作為新陳代謝的正常組成部分,你還會產生有毒副產品(例如自由基)。排毒是你的身體中和以及去除這些產品的過程,因此它們不會造成任何損害或有害的健康影響。 [1]
你的肝臟是參與解毒的主要器官,但其他器官也在這過程中發揮重要作用,包括你的胃腸道、腎臟、肺、皮膚和淋巴系統。[2]任何對身體有潛在毒性的物質都要經過幾個步驟才能從體內排出體外,分為三個階段:
毒素或藥物被轉化成為更容易從體內清除的中間水溶性化合物。通常在這個階段製造的化合物毒性更大,但這是它們在第二階段結合之前的必要步驟。
第二階段將第一階段的中間體轉化為更安全、更容易排泄的水溶性化合物。
第三階段通過尿液、糞便、汗水和呼吸將最終的水溶性產品運送出體外。
當你分開了解各個階段的排毒時,有助於了解它們之間的平衡的真正重要性。如果沒有高效的第二階段,第一階段的產品就會出現瓶頸並引致問題。在第三階段排出身體同樣重要,因為沒有排泄,你無法擺脫副產品。你不能簡單地專注於第一階段而不平衡第二階段,反之亦然,因為不達到平衡就會導致健康問題,包括氧化應激、腸道健康破壞、激素失衡等。 [3]
十字花科蔬菜(也稱為蕓苔屬蔬菜)含有兩種重要的硫代葡萄糖苷(獨特的含硫化合物),它們會影響排毒:蘿蔔硫素和 DIM。
蘿蔔硫素是一種在十字花科蔬菜中發現的天然含硫化合物,尤其是西蘭花,其健康益處得到了充分研究,包括作為抗氧化劑和支持健康的炎症反應。[4]蘿蔔硫素通過其對第一和第二階段解毒途徑的行為促進健康的排毒平衡。[5]
研究告訴我們,蘿蔔硫素在抑制第一階段中間體的過度生產同時在實行第二階段的轉化過程中發揮作用。[6]這一點尤其重要,因為研究表明,如果第二階段活動沒有均衡地進行,第一階段有毒副產品的過度積累會嚴重影響你的健康。[7]蘿蔔硫素似乎通過促進細胞調節和炎症減少同時支持肝功能來幫助平衡這一個過程。[8] [9] [10]
蘿蔔硫素還促進核因子紅細胞 2 相關因子 (Nrf2) 的上調。 Nrf2 是一種轉錄因子,可因回應氧化應激而激活。它支持數百個參與解毒的基因(尤其是第二階段的酶)和細胞抗氧化保護的表現。[11]
DIM 也來自蕓苔屬蔬菜,作為 indole-3-carbinol (I3C) 的代謝物。 在消化過程中,I3C 是一種不穩定的化合物,會因應胃中的酸而轉化為 DIM。[12] DIM 是一種更穩定的代謝物,也支持身體的排毒途徑。
研究表示,DIM 可以引致基因的上調以控制解毒酶的表現。 它還支持體內健康的炎症平衡。 DIM 補充劑可能特別有助於女性荷爾蒙的排毒,尤其是雌激素。 DIM 支持雌激素代謝的健康平衡,將比例轉移到更具保護性的形式。[13]
-西蘭花和西蘭花芽
-捲心菜
-抱子甘藍
-羽衣甘藍
-菜花
-白菜
-羽衣甘藍
你準備這些蔬菜的方式會影響你能吸收多少化合物。 加熱會增強吸收,但過度加熱也會抑制生物利用度。 根據對西蘭花的研究,蒸煮是獲得最多蘿蔔硫素的方法。[14]
雖然從上面列出的來源來獲取這些植物營養素總是理想的,但你可能需要更多的 DIM 或蘿蔔硫素來影響具體的健康問題。 在這種情況下,選擇補充劑可以作為其中一個方法去得到更多的DIM 或蘿蔔硫素以迎接不同的食物來源。[15]
蘿蔔硫素和 DIM 補充劑都有多種的形式,從粉末到膠囊,但理想情況下應該由保健醫生指導,以確保你獲得適合你個人需求的正確方式和劑量。
眾所周知,西蘭花和其他十字花科蔬菜對你有好處,這可能就是它們在排毒中發揮著作用的原因。每天服用幾份強大的植物化學物質是優化健康和支持各個階段的排毒的明智方法。DIM 或蘿蔔硫素補充劑也可以提供額外的功效,以幫助所有階段的排毒維持在一個平衡。
免責聲明:該信息僅用於一般教育目的。這些療法不是標準醫療保健的替代品,也不能由患者單獨使用。公司對作者的信息不承擔任何責任,無論是口頭傳達還是在這些材料中。所有陳述均代表作者的意見,不代表本公司的立場或意見。作者通過商品名稱、商標或製造商對任何特定產品、流程或服務的引用不構成或暗示本公司的認可或推薦。
參考資料:
[1] Raunio, Hannu, Mira Kuusisto, Risto O. Juvonen, and Olli T. Pentikäinen. “Modeling of Interactions between Xenobiotics and Cytochrome P450 (CYP) Enzymes.” Frontiers in Pharmacology 6 (June 12, 2015). https://doi.org/10.3389/fphar.2015.00123.
[2] Chiang, J. “Liver Physiology: Metabolism and Detoxification.” In Pathobiology of Human Disease, edited by Linda M. McManus and Richard N. Mitchell, 1770–82. San Diego: Academic Press, 2014. https://doi.org/10.1016/B978-0-12-386456-7.04202-7.
[3] Orešič, Matej, Aidan McGlinchey, Craig E. Wheelock, and Tuulia Hyötyläinen. “Metabolic Signatures of the Exposome-Quantifying the Impact of Exposure to Environmental Chemicals on Human Health.” Metabolites 10, no. 11 (November 10, 2020). https://doi.org/10.3390/metabo10110454.
[4] Kim, Jae Kwang, and Sang Un Park. “Current Potential Health Benefits of Sulforaphane.” EXCLI Journal 15 (October 13, 2016): 571–77. https://doi.org/10.17179/excli2016-485.
[5] Egner, Patricia A., Jian-Guo Chen, Adam T. Zarth, Derek K. Ng, Jin-Bing Wang, Kevin H. Kensler, Lisa P. Jacobson, et al. “Rapid and Sustainable Detoxication of Airborne Pollutants by Broccoli Sprout Beverage: Results of a Randomized Clinical Trial in China.” Cancer Prevention Research (Philadelphia, Pa.) 7, no. 8 (August 2014): 813–23. https://doi.org/10.1158/1940-6207.CAPR-14-0103.
[6] Riedl, Marc A., Andrew Saxon, and David Diaz-Sanchez. “Oral Sulforaphane Increases Phase II Antioxidant Enzymes in the Human Upper Airway.” Clinical Immunology (Orlando, Fla.) 130, no. 3 (March 2009): 244–51. https://doi.org/10.1016/j.clim.2008.10.007.
[7] Kim, Jae Kwang, and Sang Un Park. “Current Potential Health Benefits of Sulforaphane.” EXCLI Journal 15 (October 13, 2016): 571–77. https://doi.org/10.17179/excli2016-485.
[8] Yang, Li, Dushani L. Palliyaguru, and Thomas W. Kensler. Seminars in Oncology 43, no. 1 (February 2016): 146–53. https://doi.org/10.1053/j.seminoncol.2015.09.013.
[9] Kikuchi, Masahiro, Yusuke Ushida, Hirokazu Shiozawa, Rumiko Umeda, Kota Tsuruya, Yudai Aoki, Hiroyuki Suganuma, and Yasuhiro Nishizaki. “Sulforaphane-Rich Broccoli Sprout Extract Improves Hepatic Abnormalities in Male Subjects.” World Journal of Gastroenterology 21, no. 43 (November 21, 2015): 12457–67. https://doi.org/10.3748/wjg.v21.i43.12457.
[10] Tortorella, Stephanie M., Simon G. Royce, Paul V. Licciardi, and Tom C. Karagiannis. Antioxidants & Redox Signaling 22, no. 16 (June 1, 2015): 1382–1424. https://doi.org/10.1089/ars.2014.6097.
[11] Santín-Márquez, Roberto, Adriana Alarcón-Aguilar, Norma Edith López-Diazguerrero, Niki Chondrogianni, and Mina Königsberg. “Sulforaphane – Role in Aging and Neurodegeneration.” GeroScience 41, no. 5 (October 2019): 655–70. https://doi.org/10.1007/s11357-019-00061-7.
[12] Licznerska, Barbara, and Wanda Baer-Dubowska. Advances in Experimental Medicine and Biology 928 (2016): 131–54. https://doi.org/10.1007/978-3-319-41334-1_6.
[13] “Nutrition Reviews | Oxford Academic.” Accessed March 30, 2021. https://academic.oup.com/nutritionreviews/article/74/7/432/1752161.
[14] Wang, Grace C., Mark Farnham, and Elizabeth H. Jeffery. “Impact of Thermal Processing on Sulforaphane Yield from Broccoli ( Brassica Oleracea L. Ssp. Italica).” Journal of Agricultural and Food Chemistry 60, no. 27 (July 11, 2012): 6743–48. https://doi.org/10.1021/jf2050284.
[15] Fahey, Jed W., W. David Holtzclaw, Scott L. Wehage, Kristina L. Wade, Katherine K. Stephenson, and Paul Talalay. “Sulforaphane Bioavailability from Glucoraphanin-Rich Broccoli: Control by Active Endogenous Myrosinase.” PloS One 10, no. 11 (2015): e0140963. https://doi.org/10.1371/journal.pone.0140963.